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“Any construction or practice, typically
crude yet effective, designed to solve
a problem temporarily or expediently”
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What’s a kludge?

● Some particularly apt dictionary definitions:

“Any construction or practice, typically
crude yet effective, designed to solve
a problem temporarily or expediently”

“An ill-assorted collection of
poorly matching parts, forming
a distressing whole”

“A badly written or makeshift
piece of software”

L. Preiss



What’s an EMRI kludge model?

● if Efficiency-oriented
○ Feasible for bulk use in data analysis algorithms

● and End-to-end
○ Source parameters ⟶ trajectory ⟶ orbit ⟶ waveform ⟶ detector response

● and Extensive
○ Describes generic Kerr orbits (intrinsic) & observer dependence (extrinsic)

● and not Fully relativistic
○ At least one component uses flat-space approximation

● then It’s a kludge!



What’s an EMRI kludge model?

● if Efficiency-oriented
○ Feasible for bulk use in data analysis algorithms

● and End-to-end
○ Source parameters ⟶ trajectory ⟶ orbit ⟶ waveform ⟶ detector response

● and Extensive
○ Describes generic Kerr orbits (intrinsic) & observer dependence (extrinsic)

● and not Fully relativistic
○ At least one component uses flat-space approximation

● then It’s a kludge!
● Disclaimer: This is my personal, completely non-standard definition

○ But really the only one you should use



While we’re defining terms...

● Waveform model:
○ Not efficiency-oriented + fully relativistic

● Template model:
○ Efficiency-oriented + end-to-end + extensive



While we’re defining terms...

● Waveform model:
○ Not efficiency-oriented + fully relativistic

● Template model:
○ Efficiency-oriented + end-to-end + extensive

● Surrogate model:
○ Efficiency-oriented + end-to-end + extensive + fully relativistic
○ i.e., a surrogate is a template model that is not a kludge
○ Can (probably will) be phenomenological, not self-consistent
○ Nomenclature is compatible with the NR ROM surrogates

● Approximant:
○ LIGO-speak for a surrogate



Analytic kludge (AK)

● Barack & Cutler, 2004
● PN inspiral trajectory

○ Mixed-order fluxes for (p,e)
○ Assume constant inclination

● Flat-space orbital evolution
○ Instantaneous Keplerian ellipses
○ Add PN precession

Barack & Cutler (2004)



Analytic kludge (AK)

● Barack & Cutler, 2004
● PN inspiral trajectory

○ Mixed-order fluxes for (p,e)
○ Assume constant inclination

● Flat-space orbital evolution
○ Instantaneous Keplerian ellipses
○ Add PN precession

● Flat-space waveform generation
○ Peters-Mathews decomposition
○ Hence quadrupolar

● Time-domain detector response
○ Long-wavelength approximation
○ Extended to t/f rigid-equal-arm TDI (Babak)

Barack & Cutler (2004)



Analytic kludge (AK)

● Strengths:
○ Fast to generate at low eccentricity (< 0.5)
○ Fast to generate for long signals
○ Constructed from harmonic decomposition

Barack & Cutler (2004)



Analytic kludge (AK)

● Strengths:
○ Fast to generate at low eccentricity (< 0.5)
○ Fast to generate for long signals
○ Constructed from harmonic decomposition

● Weaknesses:
○ Unphysical instantaneous frequencies
○ Limited performance at high eccentricity

Barack & Cutler (2004)



Numerical kludge (NK)

● Babak et al., 2007
● PN inspiral trajectory

○ Mixed-order fluxes for (p,e,i)
○ Fit to adiabatic trajectories

● Curved-space orbital evolution
○ Instantaneous Kerr geodesics
○ Precession naturally included

Berry et al. (2019)



Numerical kludge (NK)

● Babak et al., 2007
● PN inspiral trajectory

○ Mixed-order fluxes for (p,e,i)
○ Fit to adiabatic trajectories

● Curved-space orbital evolution
○ Instantaneous Kerr geodesics
○ Precession naturally included

● Flat-space waveform generation
○ Associate curved & flat coordinates
○ Several multipolar prescriptions

● Time-domain detector response
○ Only long-wavelength approximation
○ Needs LISA simulator for accurate response Berry et al. (2019)



Numerical kludge (NK)

● Strengths:
○ Good agreement with Teukolsky waveforms
○ Much faster than relativistic models
○ Easy to incorporate better trajectories

Babak et al. (2007)



Numerical kludge (NK)

● Strengths:
○ Good agreement with Teukolsky waveforms
○ Much faster than relativistic models
○ Easy to incorporate better trajectories

● Weaknesses:
○ Multipole formalism is inefficient
○ Weak-field approximation is inaccurate

at high eccentricity (see talk by Osburn)
○ No easy harmonic decomposition

Babak et al. (2007)



Augmented analytic kludge (AAK)

● Chua & Gair, 2015
● PN inspiral trajectory

○ 3PN O(e^6) fluxes for (p,e)
○ Assume constant inclination
○ Local fit to NK trajectories

● Flat-space orbital evolution
○ Map to Kerr instantaneous frequencies
○ Otherwise same as AK

Chua & Gair (2015)



Augmented analytic kludge (AAK)

● Chua & Gair, 2015
● PN inspiral trajectory

○ 3PN O(e^6) fluxes for (p,e)
○ Assume constant inclination
○ Local fit to NK trajectories

● Flat-space orbital evolution
○ Map to Kerr instantaneous frequencies
○ Otherwise same as AK

● Flat-space waveform generation
○ Same as AK

● Time-domain detector response
○ Same as AK Chua & Gair (2015)



Augmented analytic kludge (AAK)

● Strengths:
○ Same as AK
○ Good agreement with NK waveforms
○ Improved implementation
○ Actually being maintained by postdoc

Chua, Moore & Gair (2017)



Augmented analytic kludge (AAK)

● Strengths:
○ Same as AK
○ Good agreement with NK waveforms
○ Improved implementation
○ Actually being maintained by postdoc

● Weaknesses:
○ Limited performance at high eccentricity
○ Frequency map ill-defined at plunge

Chua, Moore & Gair (2017)



EMRI Kludge Suite

● Software suite with all 3 kludges & common interface
○ Latest version: 0.4.2
○ NK not being maintained
○ AK only being maintained until end of LDC-1
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EMRI Kludge Suite

● Software suite with all 3 kludges & common interface
○ Latest version: 0.4.2
○ NK not being maintained
○ AK only being maintained until end of LDC-1

● Installation
○ Clone from: github.com/alvincjk/EMRI_Kludge_Suite
○ Needs GSL & FFTW libraries
○ Python wrapper available for some executables

● Usage
○ Executables in ./bin: Waveforms (all models), TDIs (AK/AAK), phases (AAK)
○ Template files in ./examples: Source/waveform parameters, model settings
○ Import Python module AAKwrapper, example usage in AAKdemo.py
○ Caveat utilitor: Limited domain validation & error handling



EMRI Kludge Suite

Model Trajectory Orbit Waveform/response Accuracy Speed

AK - Mixed-order PN 
fluxes

- Evolving Keplerian 
ellipses

- Peters-Mathews 
approximation to quadrupole
- Rigid-equal-arm 
approximation (TDIs)

- Instantaneous 
frequencies too high
- Schwarzschild
plunge handling
- Qualitative use only

- Fast, but less speedup 
over NK for shorter 
waveforms or more 
eccentric orbits

AAK - 3PN O(e^6) fluxes
- Locally fitted to NK 
trajectories

- Evolving Keplerian 
ellipses
- Instantaneous 
frequencies mapped 
to Kerr

- Peters-Mathews 
approximation to quadrupole
- Rigid-equal-arm 
approximation (TDIs)

- Phase-accurate
w.r.t. NK waveforms,
for 2-6 months
- Approximate Kerr 
plunge handling

- Same as AK, but 
slightly faster due to 
streamlining

NK - Mixed-order PN 
fluxes
- Fitted to adiabatic 
trajectories

- Evolving Kerr 
geodesics

- Quadrupole
- Long-wavelength
approximation (h_I,II)

- Phase-accurate w.r.t. 
adiabatic waveforms, 
down to 2-3 r_ISCO
- Kerr plunge handling

- Order of magnitude 
slower than AK/AAK
on average



Kludges in LISA preparatory science

● Data analysis
○ Synthetic data sets

■ MLDCs, 2006-2011 (using AK); LDCs, 2018-present (transitioning from AK to AAK)
○ Search algorithms

■ Babak, Gair & Porter, 2009 + Cornish, 2011 + Wang, Shang & Babak, 2012 +
several others (all using simplified, kludge-informed, time-frequency techniques)

○ Inference algorithms
■ Ali et al., 2012 (short data segments); not much else (even kludges are still too slow)
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● Data analysis
○ Synthetic data sets

■ MLDCs, 2006-2011 (using AK); LDCs, 2018-present (transitioning from AK to AAK)
○ Search algorithms

■ Babak, Gair & Porter, 2009 + Cornish, 2011 + Wang, Shang & Babak, 2012 +
several others (all using simplified, kludge-informed, time-frequency techniques)

○ Inference algorithms
■ Ali et al., 2012 (short data segments); not much else (even kludges are still too slow)

○ Degeneracies & confusion
■ Chua & Cutler, in prep. (mapping out the overlap surface); Barack & Cutler, 2004 +

Karnesis, Chua & Babak, in prep. (unresolvable EMRI background)
○ Systematics (theoretical errors)

■ Huerta & Gair, 2009 (effect of conservative corrections); Berry et al., 2016
(effect of resonances); Chua et al., in prep. (error marginalization)



Kludges in LISA preparatory science

● Mission performance
○ Detection rates

■ Gair et al., 2004 (using AK); Babak et al., 2017 + several other reports/proposals
(still using AK); Chua, Moore & Gair, 2017 (using AAK)

○ Parameter estimation precision (statistical errors)
■ Barack & Cutler, 2004 + Babak et al., 2017 + several other reports/proposals (all using AK)



Kludges in LISA preparatory science

● Mission performance
○ Detection rates

■ Gair et al., 2004 (using AK); Babak et al., 2017 + several other reports/proposals
(still using AK); Chua, Moore & Gair, 2017 (using AAK)

○ Parameter estimation precision (statistical errors)
■ Barack & Cutler, 2004 + Babak et al., 2017 + several other reports/proposals (all using AK)

● Science applications
○ Fundamental physics (tests of gravity)

■ Glampedakis & Babak, 2006 + Barack & Cutler, 2007 + Chua et al., 2018 (generic Kerr 
deviations); Canizares, Gair & Sopuerta, 2012 (dynamical Chern-Simons); possibly others

○ Astrophysics & cosmology
■ Sesana et al., 2008 (WD EMRIs); Han & Chen, 2019 (b-EMRIs);

surprisingly not much else (heuristic analysis, or just use cited rates/precision)



Outline (redux)

● What’s a kludge?
● An inventory of EMRI kludges

○ Analytic kludge (AK)
○ Numerical kludge (NK)
○ Augmented analytic kludge (AAK)

● Kludges in LISA preparatory science
● The EMRI data analysis problem
● Paving the way to surrogates

○ Existing pieces
○ Compression & interpolation
○ Strategies & coordination



Key features of LISA data analysis

● Problem 0: Instrument/noise model
○ Complicated instrument response
○ Non-stationary noise
○ Gaps & glitches

N. Douillet



Key features of LISA data analysis

● Problem 0: Instrument/noise model
○ Complicated instrument response
○ Non-stationary noise
○ Gaps & glitches

● Problem 1: Signal confusion
○ Many signals overlap in time/frequency:

Galactic binaries + SMBH mergers + EMRIs
○ Cannot just subtract then move on
○ Global-solution algorithm is required
○ Not practical to do fully simultaneous fit

Arnaud et al. (2007)



Key features of LISA data analysis

● Problem 2: Global search
○ Parameter space can be massive:

Large dimensionality & information volume
○ Credible regions can be very localized
○ Stochastic search algorithms are required
○ Search is hierarchical & needs multiple passes

Wikimedia



Key features of LISA data analysis

● Problem 2: Global search
○ Parameter space can be massive:

Large dimensionality & information volume
○ Credible regions can be very localized
○ Stochastic search algorithms are required
○ Search is hierarchical & needs multiple passes

● Problem 3: Modeling accuracy
○ Bias when theoretical error > statistical error
○ Only for strong-field, high-SNR sources
○ Most interesting, but most difficult to model
○ Need to understand errors for waveforms,

minimize loss of accuracy for templates Cutler & Vallisneri (2007)



● Galactic binaries
○ Confusion: Severe (resolvable + background)
○ Search: Low SNR & many signals to resolve, but templates are inexpensive
○ Modeling: No problem

The EMRI data analysis problem
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● Galactic binaries
○ Confusion: Severe (resolvable + background)
○ Search: Low SNR & many signals to resolve, but templates are inexpensive
○ Modeling: No problem

● SMBH mergers
○ Confusion: None
○ Search: Expensive templates & localized, but high SNR & fewer signals to find
○ Modeling: Difficult (NR)

● EMRIs
○ Confusion: Maybe (possible degeneracies, uncertain event rates)
○ Search: Expensive templates, highly localized, moderate SNR, possibly many signals
○ Modeling: Difficult (SF)

The EMRI data analysis problem



Will kludges be good enough?

● In terms of speed
○ Template cost: > 102 s (!)
○ Time samples: > 107 (4 years × 0.1 Hz)
○ Overlap calls: 109-1030 (!!)
○ Prohibitive for search (without sacrificing accuracy)
○ Barely OK for inference

ORNL
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Will kludges be good enough?

● In terms of speed
○ Template cost: > 102 s (!)
○ Time samples: > 107 (4 years × 0.1 Hz)
○ Overlap calls: 109-1030 (!!)
○ Prohibitive for search (without sacrificing accuracy)
○ Barely OK for inference

● In terms of accuracy
○ Assume overlaps of 0.97 with true signals
○ Barely OK for search: Lose up to half of signals

(Chua, Moore & Gair, 2017)
○ Nowhere near good enough for inference

● Need for surrogates & algorithms tailored to EMRI problem
○ Let’s leave kludges & traditional data analysis approaches behind

ORNL



● Trajectory & orbit
○ PN flux-based (see talks by Isoyama, Munna)
○ Teukolsky flux-based (see talk by Hughes)
○ SF-based (van de Meent & Warburton, 2018;

see also talk by Osburn)

Surrogates: Existing pieces

van de Meent & Warburton (2018)



● Trajectory & orbit
○ PN flux-based (see talks by Isoyama, Munna)
○ Teukolsky flux-based (see talk by Hughes)
○ SF-based (van de Meent & Warburton, 2018;

see also talk by Osburn)

● Waveform
○ Teukolsky snapshots
○ Adiabatic (see talks by Hughes, Isoyama)

● Response
○ Approximate TDI (Babak; Marsat & Baker, 2018)

Surrogates: Existing pieces

Drasco (2009)



● ROM surrogates (Field et al., 2014)
○ Construct reduced basis for signal space
○ Only valid over restricted parameter domain
○ Resultant template model is fast & accurate
○ May be viable for EMRIs with smart representation

Surrogates: Compression & interpolation



● ROM surrogates (Field et al., 2014)
○ Construct reduced basis for signal space
○ Only valid over restricted parameter domain
○ Resultant template model is fast & accurate
○ May be viable for EMRIs with smart representation

● ROMAN (Chua, Galley & Vallisneri, 2019)
○ Same basis & domain as ROM surrogates
○ Comparable speed & accuracy
○ More general, connects directly to data analysis
○ Shows utility of neural-network interpolation

(dimensionality, derivatives, etc.)

Surrogates: Compression & interpolation

Chua, Galley & Vallisneri (2019)



● Work in time-frequency domain
○ Lossless representation: STFT, wavelets, etc.
○ Admits native generation & data analysis
○ Can deal with non-stationarity & gaps
○ Best suited to nature of EMRIs & LISA

Surrogates: Strategies & coordination



● Work in time-frequency domain
○ Lossless representation: STFT, wavelets, etc.
○ Admits native generation & data analysis
○ Can deal with non-stationarity & gaps
○ Best suited to nature of EMRIs & LISA

● Compress & interpolate everything
○ e.g. Map geodesics to Teukolsky amplitudes

● Incorporate parallelization from the start
○ e.g. Native GPU implementations

Surrogates: Strategies & coordination

PRELIMINARY

Chua et al. (in prep.)



● Work in time-frequency domain
○ Lossless representation: STFT, wavelets, etc.
○ Admits native generation & data analysis
○ Can deal with non-stationarity & gaps
○ Best suited to nature of EMRIs & LISA

● Compress & interpolate everything
○ e.g. Map geodesics to Teukolsky amplitudes

● Incorporate parallelization from the start
○ e.g. Native GPU implementations

● Identify & add important missing pieces
○ Transient resonances
○ Tidal resonances? (see talk by Bonga)
○ Secondary spin? (see talk by Witzany)

Surrogates: Strategies & coordination

Berry et al. (2016)



● LSG WP 1.8.3: Efficient EMRI models
○ Kludges & related tools for LDCs
○ Fast LISA response for EMRIs
○ Reduced-representation templates
○ Fast transient resonance models
○ Fast SF trajectories
○ Modern computational techniques

● Also WPs 1.2.1 (Pound), 1.2.2 (Warburton), 1.2.3 (Brito)

Surrogates: Strategies & coordination



● LSG WP 1.8.3: Efficient EMRI models
○ Kludges & related tools for LDCs
○ Fast LISA response for EMRIs
○ Reduced-representation templates
○ Fast transient resonance models
○ Fast SF trajectories
○ Modern computational techniques

● Also WPs 1.2.1 (Pound), 1.2.2 (Warburton), 1.2.3 (Brito)
● Calling for expressions of interest/commitment

○ No need to be full or even associate LISA member
○ More at: tinyurl.com/emri-templates

Surrogates: Strategies & coordination



Summary

● EMRI kludge models are efficiency-oriented,
end-to-end, extensive, but not fully relativistic

● Kludges have fulfilled their purpose of
scoping out LISA data analysis issues;
they will still be relevant in the near future

● We now have the pieces to construct
surrogate models that are more
directly informed by perturbation theory

● These will be tailored to LISA data analysis
requirements; modern computational
techniques will improve both speed & accuracy
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